Investigating Different Context Types and Representations for Learning Word Embed- Dings
نویسندگان
چکیده
The number of word embedding models is growing every year. Most of them learn word embeddings based on the co-occurrence information of words and their context. However, it’s still an open question what is the best definition of context. We provide the first systematical investigation of different context types and representations for learning word embeddings. We conduct comprehensive experiments to evaluate their effectiveness under 4 tasks (21 datasets), which give us some insights about context selection. We hope that this paper, along with the published code, can serve as a guideline of choosing context for our community.
منابع مشابه
Investigating Different Syntactic Context Types and Context Representations for Learning Word Embeddings
The number of word embedding models is growing every year. Most of them are based on the co-occurrence information of words and their contexts. However, it is still an open question what is the best definition of context. We provide a systematical investigation of 4 different syntactic context types and context representations for learning word embeddings. Comprehensive experiments are conducte...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملWord Type Effects on L2 Word Retrieval and Learning: Homonym versus Synonym Vocabulary Instruction
The purpose of this study was twofold: (a) to assess the retention of two word types (synonyms and homonyms) in the short term memory, and (b) to investigate the effect of these word types on word learning by asking learners to learn their Persian meanings. A total of 73 Iranian language learners studying English translation participated in the study. For the first purpose, 36 freshmen from an ...
متن کاملDeep Learning meets Semantic Web: A feasibility study with the Cardiovascular Disease Ontology and PubMed citations
Background: Automatic identification of gene and protein names from biomedical publications can help curators and researchers to keep up with the findings published in the scientific literature. As of today, this is a challenging task related to information retrieval, and in the realm of Big Data Analytics. Objectives: To investigate the feasibility of using word embed-dings (i.e. distributed w...
متن کاملTowards a Model Theory for Distributed Representations
Distributed representations (such as those based on embed-dings) and discrete representations (such as those based on logic) have complementary strengths. We explore one possible approach to combining these two kinds of representations. We present a model theory/semantics for first order logic based on vectors of reals. We describe the model theory , discuss some interesting properties of such ...
متن کامل